martes, 10 de octubre de 2017

Cremallera-Piñon

CREMALLERA-PIÑÓN Permite convertir un movimiento giratorio en uno lineal continuo, o viceversa.
Aunque el sistema es perfectamente reversible, su utilidad practica suele centrarse solamente en la conversión de giratorio en lineal continuo, siendo muy apreciado para conseguir movimientos lineales de precisión (caso de microscopios u otros instrumentos ópticos como retroproyectores), desplazamiento del cabezal de los taladros sensitivos, movimiento de puertas automaticas de garaje, sacacorchos, regulación de altura de los trípodes, movimientos de estanterías móviles empleadas en archivos, farmacias o bibliotecas, cerraduras...
Control de avance y retroceso de un taladro sensitivo
El sistema esta formado por un piñon (rueda dentada) que engrana perfectamente en una cremallera
Movimiento en un mecanismo cremallera-piñón
Cuando el piñón gira, sus dientes empujan los de la cremallera, provocando el desplazamiento lineal de esta


Mecanismo cremallera-piñón

Si lo que se mueve es la cremallera, sus dientes empujan a los del piñón consiguiendo que este gire y obteniendo en su eje un movimiento giratorio

CARACTERÍSTICAS
La relación entre la velocidad de giro del piñón (N) y la velocidad lineal de la cremallera (V) depende de dos factores: El numero de dientes del piñón (Z) y el numero de dientes por centímetro de la cremallera (n)
Mecanismo cremallera-piñón
Por cada vuelta completa del piñón la cremallera se desplazara avanzando tantos dientes como tenga el piñón. Por tanto se desplazara una distancia:
d=z/n
Si la velocidad de giro del piñón:
V=N·(z/n)
Si la velocidad de giro del piñón (N) se da en revoluciones por minuto (r.p.m), la velocidad lineal de la cremallera (V) resultara en centímetros por minuto (cm/minuto).Según esto, si tenemos un piñón de 8 dientes que gira a 120 r.p.m. y una cremallera que tiene 4 dientes por centímetro, el desplazamiento de la cremallera por cada vuelta de piñón sera: d=z/n=8/4= 2 cm.Y la velocidad de avance (o retroceso) de la cremallera sera: V=120·(8/4)=240 cm por minuto, es decir, avanzará 4 cm por segundo.
Ejemplo cremallera piñón
En otra forma muy Util de realizar estos calculos es empleado factores de conversion. En el ejemplo anterior hariamos lo siguiente para calular lo que avanza por vuelta la cremallera:
Ejemplo con factores de conversion
para calcular la velocidad: 
Ejemplo de factor de conversión
 

martes, 12 de septiembre de 2017

                             FUENTE DE ENERGÍAS  


RENOVABLES :
son aquellas que, tras ser utilizadas, se pueden regenerar de manera natural o artificial. Algunas de estas fuentes renovables están sometidas a ciclos que se mantienen de forma más o menos constante en la naturaleza.

Existe varias fuentes de energia como:
  • Energía mareomotriz (mareas)
  • Energía hidráulica (embalses)
  • Energía eólica (viento)
  • Energía solar (Sol)
  • Energía de la biomasa (vegetación)   

MAREOMOTRIZ 

La Energía mareomotriz es la producida por el movimiento de las masas de agua provocado por las subidas y bajadas de las mareas, así como por las olas que se originan en la superficie del mar por la acción del viento.
Ventajas: Es una fuente de energía limpia, sin residuos y casi inagotable.
Inconvenientes: Sólo pueden estar en zonas marítimas, pueden verse afectadas por desastres climatológicos, dependen de la amplitud de las mareas y las instalaciones son grandes y costosas.

ENERGÍA HIDRÁULICA 
es la producida por el agua retenida en embalses o pantanos a gran altura (que posee energía potencial gravitatoria). Si en un momento dado se deja caer hasta un nivel inferior, esta energía se convierte en energía cinética y, posteriormente, en energía eléctrica en la central hidroeléctrica.
Ventajas: Es una fuente de energía limpia, sin residuos y fácil de almacenar. Además, el agua almacenada en embalses situados en lugares altos permite regular el caudal del río.
Inconvenientes: La construcción de centrales hidroeléctricas es costosa y se necesitan grandes tendidos eléctricos. Además, los embalses producen pérdidas de suelo productivo y fauna terrestre debido a la inundación del terreno destinado a ellos. También provocan la disminución del caudal de los ríos y arroyos bajo la presa y alteran la calidad de las aguas.
Resultado de imagen para energia hidraulica

ENERGIA EOLICA 
es la energía cinética producida por el viento. se transforma en electricidad en unos aparatos llamados aerogeneradores (molinos de viento especiales).
Ventajas: Es una fuente de energía inagotable y, una vez hecha la instalación, gratuita. Además, no contamina: al no existir combustión, no produce lluvia ácida, no contribuye al aumento del efecto invernadero, no destruye la capa de ozono y no genera residuos.
Inconvenientes: Es una fuente de energía intermitente, ya que depende de la regularidad de los vientos. Además, los aerogeneradores son grandes y caros.

Resultado de imagen para energia eolica
ENERGIA SOLAR 


es la que llega a la Tierra en forma de radiación electromagnética (luz, calor y rayos ultravioleta principalmente) procedente del Sol, donde ha sido generada por un proceso de fusión nuclear. El aprovechamiento de la energía solar se puede realizar de dos formas: por conversión térmica de alta temperatura (sistema fototérmico) y por conversión fotovoltaica (sistema fotovoltaico).
La conversión térmica de alta temperatura consiste en transformar la energía solar en energía térmica almacenada en un fluido. Para calentar el líquido se emplean unos dispositivos llamados colectores.
La conversión fotovoltaica consiste en la transformación directa de la energía luminosa en energía eléctrica. Se utilizan para ello unas placas solares formadas por células fotovoltaicas (de silicio o de germanio).
Ventajas: Es una energía no contaminante y proporciona energía barata en países no industrializados.
Inconvenientes: Es una fuente energética intermitente, ya que depende del clima y del número de horas de Sol al año. Además, su rendimiento energético es bastante bajo.
Resultado de imagen para energia solar
ENERGIA BIOMASA es la que se obtiene de los compuestos orgánicos mediante procesos naturales. Con el término biomasa se alude a la energía solar, convertida en materia orgánica por la vegetación, que se puede recuperar por combustión directa o transformando esa materia en otros combustibles, como alcohol, metanol o aceite. También se puede obtener biogás, de composición parecida al gas natural, a partir de desechos orgánicos.
Ventajas: Es una fuente de energía limpiaCOMBU y con pocos residuos que, además son biodegradables. También, se produce de forma continua como consecuencia de la actividad humana.
Inconvenientes: Se necesitan grandes cantidades de plantas y, por tanto, de terreno. Se intenta "fabricar" el vegetal adecuado mediante ingeniería genética. Su rendimiento es menor que el de los combustibles fósiles y produce gases, como el dióxido de carbono, que aumentan el efecto invernadero.
Resultado de imagen para energia biomasa

NO RENOVABLES 
son aquellas que se encuentran de forma limitada en el planeta y cuya velocidad de consumo es mayor que la de su regeneración.

Existen varias fuentes de energía no renovables, como son:
  • Los combustibles fósiles (carbón, petróleo y gas natural)
  • La energía nuclear (fisión y fusión nuclear)
LOS COMBUSTIBLES FÓSILES Los Combustibles fósiles (carbón, petróleo y gas natural) son sustancias originadas por la acumulación, hace millones de años, de grandes cantidades de restos de seres vivos en el fondo de lagos y otras cuencas sedimentarias.

EL CARBON 

El Carbón es una sustancia ligera, de color negro, que procede de la fosilización de restos orgánicos vegetales. Existen 4 tipos: antracita, hulla, lignito y turba.
El carbón se utiliza como combustible en la industria, en las centrales térmicas y en las calefacciones domésticas.
Resultado de imagen para CARBON

EL PEOTROLEO 
es el producto de la descomposición de los restos de organismos vivos microscópicos que vivieron hace millones de años en mares, lagos y desembocaduras de ríos. Se trata de una sustancia líquida, menos densa que el agua, de color oscuro, aspecto aceitoso y olor fuerte, formada por una mezcla de hidrocarburos (compuestos químicos que sólo contienen en sus moléculas carbono e hidrógeno).
El petróleo tiene, hoy día, muchísimas aplicaciones, entre ellas: gasolinas, gasóleo, abonos, plásticos, explosivos, medicamentos, colorantes, fibras sintéticas, etc. De ahí la necesidad de no malgastarlo como simple combustible.
Se emplea en las centrales térmicas como combustible, en el transporte y en usos domésticos.
Resultado de imagen para PETROLEO

GAS NATURAL
Esta relacionado al petroleo y suele estar formado por una capa o bolsa sobre los yacimientos del petroleo 
Resultado de imagen para gas natural

ENERGIA NUCLEAR  
La Energía nuclear es la energía almacenada en el núcleo de los átomos, que se desprende en la desintegración de dichos núcleos..
Una central nuclear es un tipo de central eléctrica en la que, en lugar de combustibles fósiles, se emplea uranio-235, un isótopo del elemento uranio que se fisiona en núcleos de átomos más pequeños y libera una gran cantidad de energía (según la ecuación E = mc2 de Einstein), la cual se emplea para calentar agua que, convertida en vapor, acciona unas turbinas unidas a un generador que produce la electricidad.
Las reacciones nucleares de fisión en cadena se llevan a cabo en los reactores nucleares, que equivaldrían a la caldera en una central eléctrica de combustibles fósiles.
Ventajas: Pequeñas cantidades de combustible producen mucha energía y las reservas de materiales nucleares son abundantes.
Inconvenientes: Las centrales nucleares generan residuos de difícil eliminación. El peligro de radiactividad exige la adopción de medidas de seguridad y control que resultan muy costosas.


EL URANIO. ENERGÍA NUCLEAR DE FISIÓN
La Energía nuclear de fisión se obtiene al bombardear, con neutrones a gran velocidad, los átomos de ciertas sustancias; algunos de estos neutrones alcanzan el núcleo atómico y lo rompen en dos partes. Se libera una gran cantidad de energía y algunos neutrones. Estos neutrones pueden chocar contra otros núcleos, que se romperán produciendo más energía y más neutrones que chocarán contra otros núcleos. Esto es una reacción en cadena.
Para que esta reacción en cadena se produzca, es necesario usar sustancias que se desintegren fácilmente, es decir, sustancias radiactivas. Estas sustancias son muy peligrosas para el hombre si no se manejan con las precauciones adecuadas.
La sustancia más usada es el uranio-235, aunque también se usan el uranio-233 y el plutonio-239.
En todas estas reacciones, una pequeña parte de masa se transforma en energía según la ecuación E = mc2. Por eso se obtienen cantidades tan grandes de energía. Si 1 kg de carbón produce 30000000 julios, 1 kg de uranio-235 produce 80000000000000 julios; es decir, unos dos millones de veces más energía.
Resultado de imagen para nuclear De fision no renovable

 EL DEUTERIO.
La Energía nuclear de fusión será, probablemente, la fuente de energía del futuro. Es la misma reacción que produce la energía en las estrellas. El calor y la luz que nos llegan del Sol se producen en reacciones de fusión nuclear.
En la fusión nuclear se unen átomos pequeños para formar otros de mayor tamaño. En el proceso se liberan grandes cantidades de energía, mucho mayores que en la fisión.
La sustancia más adecuada para fusionarse es el hidrógeno o alguno de sus isótopos para dar lugar a helio. La más adecuada es la fusión entre deuterio (hidrógeno-2) y tritio (hidrógeno-3).
Ventajas: No produce residuos radiactivos y el hidrógeno es muy abundante en la naturaleza.
Inconvenientes: Para iniciar la reacción hace falta una temperatura de 100 millones de grados centígrados. Conseguir esta temperatura es muy difícil aunque se ha podido alcanzar durante breves instantes con potentes rayos láser.